Statik Statik Atalet Momentleri Formülleri 1804 2 2 b b e e b h e h h h h b h e b h b b1 2 e r e e r 2 1 b 2 e r r e d 2 2 b e b a r e 1 2 2 2 2 2 2 2 4 3 3 2 4 4 4 4 3 3 3 3 3 4 4 4 3 3 4 4 2 2 4 3 2 3 33 4 4 3 3 3 3 2 2 2 r =0.01r =0.00966r r e 0.0075 1 r r =0.7766 e =0.2234 e 1- Q 4 =0.2146r r Q 32 = 4 Q dr =0.0982d d =0.1 =0.7854r r =0.7854 =0.05 d d =0.0491 r d d Q 4 = 64 Q = Q 4 Q b= 0.4142 a 1+ 2 a = =0.6381 r r 2 1+2 0.0075r 0.6906r 0.1095a a 0.0547 0.8284a 0.924 r r 2.828 2 d 6 b + b + 3 r 2.598 = r 2 3 3 16 r =0.5413 r 5 5 0.5413r = r 16 3 r =0.866 r 3 4 b 2 h 1 bb 1 b+ 6 b 12 3 6 + 2 + b 2 2 3 2 b 1+ 2 + 6 36 2 b 6 b 1 bb 1 h h 1 b 1 b+b 2 b+ 2 3 3 1 M 2 h 1 b 2 8 5 r r bh 2 bh 24 36 bh = h h 0.1179 h 2 3 2 2 h h 6 12 h 6 bh bh 12 h 2 2 h h 2 h bh e1 90B r = = 12 e e r r 1 2 2r r e e b a b e h h e b d d d e a a d d d Re r e a A A a A A e H h e b 1 2 1 2 4 3 3 4 3 3 4 3 4 3 4 4 r 4 4 4 4 2 2 2 2 2 2 2 2 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 3 3 4 3 -d h 3 4 33 3 3 2 2 4 2 2 2 2 2 2 3 3 4 4 4 2 2 2 2 3 3 3 3 4 4 ab 1- dd +b 1 -d h +b 1 1 d d - 1 +b 12 1 16 3Q h-d 1 -d h +b 3Q 16 1 6h h +b 6 1 d 16 3Q h-d -d h +b +b h-d -d h 3Q 16 d 1 12 +b 4 Q 1- dd 2 h-d+ b 4 Q d + b ) h-d ( 2 a 1 6 3Q - 16 ad d a 16 - 3Q 12 1 d - 4 Q a M R d d d 1 - Q 32 4 Q - Rr = = R - Q 4 64 Q 2- 1 dd d d 1 - Q 4 A = 0.1179 -a A A -a A 12 2 A 12 -a A -a 6 1A A -a -a 12 A -a A H 6 b ( H -h ) ) -h H ( b 12 Z 1=0.1296 r r =0.0956 2 Z Z 2=0.1908 r r =0.2587 1 Z ba =0.7854 ba Q 4 ba =0.7854 ba Q - Q 8 r =0.1098 r 9 8 1 r r =0.5756 e =0.4244 e e =0.4244 e =0.5756 r r 1 d 2 2 a h 2 2 h 0.055 r r Q 4 Q 2 Q r a 2 2 A A 2 2 H b H-h Q 4 4 12 h 12 2 A:Sectional Area e:Distance of Center of Gravity l:Geometrical Moment of Inertia Z=l/e:Section Modulus Calculation of Area, Center of Gravity and Geometrical Moment of Inertia ’Technical Data» Cross Section Cross Section 1803 {Kgf/mm } M10 /A 2 11.7 12.5 11.7 10.8 10.1 6.0 6.0 9.2~11.8 17.3 10.2 17.6 20.8 17.1 23.6 23.6 8.4 21000 20500 21000 21000 22300 56000 54000 7500~10500 19700 20400 11700 10300 13000 6900 7200 10600 7.85 7.8 7.85 7.75 8.2 7.3 8.0 7.78 8.9 8.4 8.3 2.7 2.8 4.5 14.1 13.9 -6 FD L V= Q 4 d 2 h = h 1 d h h 2 d 4 Q 2 h 2 1+h 2 3 V= A= h 6 h arn a h h r a 3 6 Qh = V= Qh (3r-h) 2 (3a 2 +h 2 ) Qabc V= V= 3 4 Qab 4 3 2 a c b V= d Q 42 2 2 22 d b a a +b V= d Q 4 2 d 3 R R , d (R+R , -) 4 =Qth(D-t) V= Q h(D 2 -d 2 ) =Qth(d+t) d t D h (A+a+ Aa) h V= 3 h 2 V= Qr 3 2 h 2 h =2.0944r h r V=2Q 2 Rr 2 2 =19.739Rr 2 =2.4674Dd D d r R Dd Q 4 2 = 2 =1.0472r r V= Q 3 2 h 2 h r h 3 6 Q = d 3 V= 4 Qr =0.5236d 3 3 =4.1888r 3 d Qh V= (3a 6 2 +3b 2 +h 2 ) a b h (2D Q V= 12 2 +d 2 ) V=0.209 2 Dd+1/4d 2) (2D d D r r r r W= = =79[g] 4 D Q 2 2 M5M7.85 M1.6 Q 4 Calculation of Cubic Volume and Weight/Physical Properties of Materials ’Technical Data» Quantifiers, Unit Symbols, Chemical Symbols and Symbols of Elements IGreek Symbols Uppercase Lowercase Pronunciation Conventional Usage ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ß ? ? ? ? ? ? ? ? ? µ ? ? ? ? ? ? ? ? ?, ? ? ? ? alpha beta gamma delta epsilon zeta eta theta iota kappa lambda mu nu xi omicron pi rho sigma tau upsilon phi chi psi omega Angle, Coefficient Angle, Coefficient Angle, Weight Per Unit Area, Relationship (Uppercase) Small Change, Density, Displacement Small Amount, Distortion Variable Variable Angle, Temperature, Time Radius of Gyration Wavelength, Characteristic Value Friction Coefficient 10 -6 (Micro) Frequency Variable Circle Ratio Q(3.14159E), Angle Symbol of Product (Uppercase) Radius, Density Stress, Standard Deviation, Summation (Uppercase) Time constant, Time, Torque Angle, Function, Diameter Angle, Function Angular Velocity:2Qf Ohm:Unit of Electric Resistance (Uppercase) Remark:Unless otherwise specified, lowercase letters are the norm. IName of Elements and Atomic Symbols Atomic Number Name Symbol Atomic Number Name Symbol 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminum Silicon Phosphorous Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Brass Zinc Gallium Germanium Arsenic Selenium Bromine Krypton Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc R Rh Pd Ag Cd In Sn Sb T 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Iodine Xenon Cesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysproium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium I Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Remark: This table is based on Appendix A (Names and Symbols of Elements) of ISO 31/8-1980 (Amounts and Units of Physical Chemistry and Molecular Physics) and Appendix C (Names and Symbols of Radionuclides) of ISO 31/9-1980 (Amounts and Units of Atomic Physics and Nuclear Physics). r a n ICharacteristics of Metals IHow to Calculate the Volume Specific Gravity YoungV s Modulus Thermal Expansion Coefficient Mild steel NAK80 SKD11 SKD61 M2 Tool Steel Carbide V30 Carbide V40 Cast Iron 304 Stainless Steel 440C Stainless Steel Oxygen Free Copper C1020 6/4 Brass C2801 Beryllium Copper C1720 Aluminum A1100 Duralumin 7075 Aluminum Titanium Solid Volume V Solid Volume V Solid Volume V Solid Volume V IHow to Calculate the Weight Weight W[g]=Volume[cm 3 ]MSpecific Gravity Ex.:Mild Steel FD=16 and L=50mm, the weight is: MLMSpecific Gravity Turncated Cylinder Pyramid A=Area of base =Radius of inscribed circle =Length of a side of a regular polygon =Number of the sides of a regular polygon Spherical Crown Ellipsoid Oval Ring Cross Cylinder Hollow Cylinder Turncated Pyramid Spherical Segment Spherical Belt When the circumferance makes a curve equal to the circular arc, When the circumferance makes a curve equal to a parabolic line, a is the radius. In case of a spheroid(b=c) A , a=area of both ends Torus Circular Cone Sphere Barrel Material Metric_1801-1886 3/1/06 10:29 Page 1802